《求小数的近似数》教学反思

时间:2024-07-14 16:07:59
《求小数的近似数》教学反思

《求小数的近似数》教学反思

作为一位到岗不久的教师,我们的工作之一就是课堂教学,借助教学反思可以快速提升我们的教学能力,教学反思要怎么写呢?下面是小编整理的《求小数的近似数》教学反思,仅供参考,大家一起来看看吧。

《求小数的近似数》教学反思1

学生对求一个小数的近似数掌握较好,基本能够根据题目要求求出一个小数的近似数。

然而对于把不是整万或整亿的数改写成用“万”或“亿”作单位的数就不乐观了。主要有以下几个方面的原因:

1、以前学生学过把整万或整亿的数改写成用万或亿作单位的数,而今天所学的是把一个不是整万或整亿的数改写成以“万”或“亿”作单位的数,这就增加了难度,学生不知小数点后面的小数部分该如何处理。

2、前面刚学过求一个小数的近似数,学生往往把求一个小数的近似数和把不是整万或整亿的数改写成用“万”或“亿”作单位的数相混淆,错把改写当成了求一个小数的近似数。

针对以上情况,解决办法:一方面给学生讲清把不是整万或整亿的数改写成用“万”或“亿”作单位的数和把整万或整亿的数改写成用万或亿作单位的数方法相同,后者的改写是移动小数点,其实前者也是移动小数点,只不过运用了我们后面所学的小数的基本性质,把小数点后面的零去掉了。另一方面,讲清求一个小数的近似数和把一个数改写成指定单位的数有什么区别:求近似数需要省略后面的尾数,所以求的是一个数的近似数;而改写成以“万”或“亿”作单位的数,只要把小数点向左移动四位或八位,加一个单位就可以,没有大小的改变数的大小;

3、多讲多练,在不断的重复练习过程中,让学生自悟。

《求小数的近似数》教学反思2

《求一个小数的近似数》这节课教学内容是建立在学生已经对求整数的近似数基础上进行教学上,这两个内容都是让学生根据四舍五入法去求数的近似数,但是不同点就是近似的部位不同,针对这个情况,在教学这节课时,以求整数的近似数进行导入,让学生说一说近似的依据——也就是四舍五入法,从而引入小数近似数的教学。这节课是掌握知识教学,在上课之前自己感觉整节课的设计挺不错的,开始的分类,由放到收,让学生在探索中学习。而在知识点的获取时,让学生主观发现,分析比较,概括出求一个小数的近似数的方法,体现了教师的主导作用和学生的主体地位。整节课的设计,总体感觉还是比较适合学生的思维发展的,在结构上,我也注重了前后呼应,使整堂课也显得比较紧凑。

但是上完之后,我觉得:学生掌握得不是不好,尤其是根据“四舍五入法”求一个小数的近似数,这里需要学生从逆向思维的角度去思考,但学生的逆向思维似乎都比较欠缺,这是我对学生在能力上的估计不足。对于重难点的突破尚有所欠缺,驾驭教材的能力有所欠缺。同时,应该在课堂上多给学生自己表达的机会,同时在“冷场”的时候多调动学生的积极性。

而《求一个小数的近似数》这一部分内容的练习题目要求很多样,如同是保留一位小数,可以说是保留一位小数,也可以说是精确到十分位,或者是省略十分位后的数等等,针对这一情况,让学生在练习时多读题,并逐一进行分析,如精确到十分位,省略十分位后的数都是要求保留几位小数,这样学生就能更好的理解。

《求小数的近似数》教学反思3

本节课教授的是求一个小数的近似数的方法。在学习之前,我先让学生复习了求整数求近似数的方法——四舍五入法,并举例说明了具体做法,让学生明确了整数的尾数是改写成“0”。在求小数近似数的过程中,引导学生理解保留几位小数的含义也是这节课教师的重要教学任务。这个环节我是让学生看书自学的,在讲完第一个小题0.984≈0.98后,我让学生比较了求小数近似数的方法与求整数近似数的方法,使学生很快就明确了求小数的近似数要把尾数部分舍去;在教学完0.984≈1.0后,让学生讨论“0”能不能舍去,使学生明确了“0”如果舍去了,小数部分没有数字就没有保留到十分位;在教学0.984保留整数时,也让学生充分讨论了小数部分要不要加“0”。最后引导学生总结出求小数近似数的方法。我个人认为本节课最成功之处就是让学生比较了小数与整数近似数的方法,学生在掌握了新知的同时,对学过的知识也做了较好的复习。

《求小数的近似数》教学反思4

教学内容

课本73页例1

教学目标

1、使学生掌握求一个小数的近似数的方法,能正确地安需要用“四舍五入法”保留一定小数的位数,理解保留小数位数越多精确程度越高。

2、通过旧知迁移新知的方法,让学生掌握知识。

3、培养学生的类推能力,增进学生对数学的理解和应用数学的信心。

教学重难点

求一个小数的近似数的方法

理解保留小数位数越多,精确的程度越高。

教学过程

一、复习

1、把下面各数省略万位后面的尾数求出它们的近似数。

734562 38460 50074 10274

让一位学生说出求近似数的方法。

2、下面的空格里可以填哪些数字。

32()546≈ 47()03≈

师:这是我们学过的求一个整数的近似数,那么求一个小数的近似数不知道同学们有没有信心掌握好呢?今天我们就来学习求一个小数的近似数。板书课题:求一个小数的近似数

二、导入新课

1、课件显示例1图。

他们是怎样得出豆豆身高的近似数的?

(1)保留两位小数

师板书:0.984≈0.98 保留两位小数

用什么方法?(四舍五入法)根据学生回答师板书:四舍五入

引导学生说出:如果保留两位小数就要把第三位数省略,因为第三位小数小于5,所以舍去。

(2)保留一位小数

师板书:0.984≈

让学生独立完成,指名几位不同做法的学生上黑板写:0.984≈0.9,0.984≈1,0.984≈1.0.学生通过观察比较发现:在表示近似数时,小数末尾的0不能去掉。

接着让做对的同学谈自己的想法:保留一位小数,就看第二位小数,第二位小数上的数字8大于5,向前一位进一,末尾的0不能去掉。

(3)保留整数。

师板书:0.984≈

学生独立完成,集体订正,说出想法。

小结:求近似数时,保留整数,表示精确到个位;保留一位小数,表示精确到十分位;保留两位小数,表示精确到百分位。。。。。。

三、巩固练习

1、课本74页做一做。

2、课件显示填空题。

3、课本练习十二第一题。

4、课件显示判断题。

四、总结

这节课你有什么收获?

五、作业

课本练习十二第2、5、6题。

……此处隐藏11960个字……>(3)反馈:要保留一位小数,就要省略十分位后面的数,要看百分位上的数。百分位上的9满5,进一。

1.496亿千米≈1.5亿千米

讲解:精确到十分位,就是保留一位小数。

2、精确到百分位

(1)独立完成

(2)组织交流。

精确到百分位就是要保留两位小数,就要省略百分位后面的数,要看千分位上的数。千分位上的6,省略尾数后向百分位进1。百分位上9+1=10,满十又要向前一位进一。

1.496亿千米≈1.50亿千米

问:近似数1.50末尾的0能去掉,为什么?

学生讨论:明确:不能去掉,去掉就不符合要求了。

教师总结:0不能去掉,它起到占位的作用。

3、比较精确度。

问:1.5和1.50哪个更精确?

学生讨论后汇报想法。

想法1:1.5是精确到十分位的结果,1.50是精确到百分位的结果,所以1.50比1.5更精确。所以1.50末尾的0不能去掉。

想法2:近似值是1.5的两位小数在1.45-1.54之间,而近似值是1.50的三位小数在1.495-1.504的范围更大,所以1.50比1.5更精确。

4、精确到整数

(1)独立完成

(2)组织交流。

精确到整数就要省略百分位后面的数,要看十分位上的数。十分位上的4,

省略小数点后的尾数。

5、教学“试一试”

学生独立解决,集体订正。

引导学生比较与刚才例题的区别,进一步明确什么时候应四舍,什么时候应五入。

(二)小结:

教师提出问题:求小数近似数应注意什么?

引导学生讨论知道:求一个小数的近似数要注意两点:

(1)要根据题目的要求取近似值,

如果要保留整数,就要看十分位是几;要保留一位小数,就看百分位是几……然后按“四舍五入法”决定是舍还是入。

(2)取近似值时,在保留的小数位里,小数末一位或几位是0的,0应当保留,不能丢掉。

(三)、教学“练一练”

学生独立解决,集体订正。

电评时引导学生在两方面进行比较:

(1)按不同精确要求求近似数的比较。

(2)取一个数的近似数与把一个数改写

成以“万”或“亿”作单位的小数的方法的比较。

第二小题练习完毕后,再要求学生把改写后的小数和求出的近似数分别放入原来的语言环境中读一读、比一比,体会到用“万”作单位的小数及其近似数的应用价值。

四、练习巩固,拓展应用

1.填空:

① 求一个小数的近似数,要根据需要用()法保留小数数位.保留整数,表示精确到()位;保留一位小数表示精确到()位;保留两位小数表示精确到()位……

②近似数的结果一般地说6.0要比6精确.因为6.0表示精确到了()位,6表示精确到了()位,所以6.0后面的“0”不能丢掉.

2.判断题(用手势表示“√”或“×”)

①3.97精确到十分位是4.0。()

②把9.996精确到百分位是10.00。()

③8和8.0的大小相等,它们的精确度也相同。()

④在表示近似数时,小数末尾的0应该去掉。()

3.“练习七”第五题。

(1)学生独立完成

(2)教师检查反馈。

说明:把王强身高精确到百分位,体重精确到个位,让学生体会到实际应用中要根据需要来确定近似数的精确程度。

4、“练习七”第6题。

(1)组织学生观察、比较,说说哪组的两个数是等值。哪组的两个数是近似。

(2)独立填写后再组织汇报交流。

5、“练习七”第7~8题。

学生独立审题并解答。

6、解决前面的问题。在实际生活中,9.547元≈()元

5.小数的近似数在我们生活中应用非常广泛,请同学们课余留心观察,看什么地方有了小数近似数,下节课来大家交流。

五、课堂作业:

“练习七”第4题。

六、收获提炼

今天这节课你有哪些新的收获?还有什么要提醒同学们注意的地方吗?

七、课后反思

1、探索是数学的生命线,没有探索就没有数学的发展。课始,先让学生明确探索的目标,给学生以思维的方向。课中,引导学生从求整数的近似数迁移至小数,使学生的探索思维多角度、多层次展开,在学生探索的过程中学习数学、理解数学,从而感受到数学的魅力。

2、新课程注重强调学生的主体地位。但是我认为在特定的课堂时空中,要让没有多少探索经验和能力贮备的学生完全自主地“找”出求小数近似数的方法,也实在有些勉为其难。

因此,在课堂教学中我注意适度地加以引导,做到了放得“开”,收得“拢”;放得适度,收得自然。

既尊重了学生的主体地位,又张扬了学生的个性,同时有效地完成了课堂教学任务。

《求小数的近似数》教学反思15

本节课的内容是在学生学习了求整数的近似数的基础上进行教学的,目的是让学生学会用四舍五入法求小数的近似数。本节课的教学重点是理解保留整数、保留一位小数、保留两位小数的含义。教学难点是近似数的连续进位问题。

成功之处:

1.复旧引新,沟通前后知识间的联系。课始出示:把下面各数省略万后面的尾数,求出它们的近似数986413 35628 65214 90088 ,目的是让学生温故而知新,减少学习中的盲目性,提高课堂教学效率。

2.联系生活实际,体会数学与生活的联系。结合主题图,创设了邻居家的孩子“小豆豆”测身高的生活情境,自然的引入新课,使学生看到小数在生活中的广泛应用。在巩固环节,让学生说出把4、85元精确到元、精确到角分别是多少钱,这样把学习的求一个小数的近似数的知识还原与生活,应用与生活。

3.深刻体会保留保留几位小数的含义。通过学习,使学生体会到保留一位小数就是精确到十分位;保留两位小数就是精确到百分位;保留整数就是精确到十分位。

4.重点比较2.5和2.50的区别。通过在数轴上的取值范围,使学生体会到2.5的取值范围在2.45~2.54,2.50的取值范围在2.495~2.504,虽然大小相等,但是精确度不一样,2.5表示精确到十分位,2.50表示精确到百分位。

不足之处:

1.学生对于保留整数就是看十分位上的数是否满5,但对于精确到十分位就是保留整数的逆向理解有些困难。

2.对于典型题中形如9.956保留整数、保留一位小数,学生还是存在不知如何进位的问题。

再教设计:

1.加强保留整数、保留一位小数、保留两位小数的含义的逆向理解,使学生深刻体会保留几位小数的含义。

2.加强典型易错题的练习,消除学习中易出错、易混淆的问题。

《《求小数的近似数》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式